1,697 research outputs found

    Hydrodynamic fingering instability of driven wetting films: hindrance by diffusion

    Get PDF
    Recent experimental and theoretical efforts have revealed the existence of a fingering instability at the moving front of thin liquid films forced to spread under gravitational, rotational or surface shear stresses, as for example by using the Marangoni effect. The authors describe how the presence of a precursor film in front of the spreading macroscopic film, whether it is by prewetting the substrate or by surface diffusion or multilayer absorption, can prevent the development of the instability

    Automated quality control for proton magnetic resonance spectroscopy data using convex non-negative matrix factorization

    Get PDF
    Proton Magnetic Resonance Spectroscopy (1H MRS) has proven its diagnostic potential in a variety of conditions. However, MRS is not yet widely used in clinical routine because of the lack of experts on its diagnostic interpretation. Although data-based decision support systems exist to aid diagnosis, they often take for granted that the data is of good quality, which is not always the case in a real application context. Systems based on models built with bad quality data are likely to underperform in their decision support tasks. In this study, we propose a system to filter out such bad quality data. It is based on convex Non-Negative Matrix Factorization models, used as a dimensionality reduction procedure, and on the use of several classifiers to discriminate between good and bad quality data.Peer ReviewedPostprint (author's final draft

    Nonlinear coherent states and Ehrenfest time for Schrodinger equation

    Full text link
    We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, the nonlinearity is negligible up to the Ehrenfest time. If the initial data have the critical size, then at leading order the wave function propagates like a coherent state whose envelope is given by a nonlinear equation, up to a time of the same order as the Ehrenfest time. We also prove a nonlinear superposition principle for these nonlinear wave packets.Comment: 27 page

    High-density speckle contrast optical tomography (SCOT) for three dimensional tomographic imaging of the small animal brain

    Get PDF
    High-density speckle contrast optical tomography (SCOT) utilizing tens of thousands of source-detector pairs, was developed for in vivo imaging of blood flow in small animals. The reduction in cerebral blood flow (CBF) due to local ischemic stroke in a mouse brain was transcanially imaged and reconstructed in three dimensions. The reconstructed volume was then compared with corresponding magnetic resonance images demonstrating that the volume of reduced CBF agrees with the infarct zone at twenty-four hours.Peer ReviewedPostprint (author's final draft

    Receiver Architectures for MIMO-OFDM Based on a Combined VMP-SP Algorithm

    Get PDF
    Iterative information processing, either based on heuristics or analytical frameworks, has been shown to be a very powerful tool for the design of efficient, yet feasible, wireless receiver architectures. Within this context, algorithms performing message-passing on a probabilistic graph, such as the sum-product (SP) and variational message passing (VMP) algorithms, have become increasingly popular. In this contribution, we apply a combined VMP-SP message-passing technique to the design of receivers for MIMO-ODFM systems. The message-passing equations of the combined scheme can be obtained from the equations of the stationary points of a constrained region-based free energy approximation. When applied to a MIMO-OFDM probabilistic model, we obtain a generic receiver architecture performing iterative channel weight and noise precision estimation, equalization and data decoding. We show that this generic scheme can be particularized to a variety of different receiver structures, ranging from high-performance iterative structures to low complexity receivers. This allows for a flexible design of the signal processing specially tailored for the requirements of each specific application. The numerical assessment of our solutions, based on Monte Carlo simulations, corroborates the high performance of the proposed algorithms and their superiority to heuristic approaches

    Linear vs. nonlinear effects for nonlinear Schrodinger equations with potential

    Full text link
    We review some recent results on nonlinear Schrodinger equations with potential, with emphasis on the case where the potential is a second order polynomial, for which the interaction between the linear dynamics caused by the potential, and the nonlinear effects, can be described quite precisely. This includes semi-classical regimes, as well as finite time blow-up and scattering issues. We present the tools used for these problems, as well as their limitations, and outline the arguments of the proofs.Comment: 20 pages; survey of previous result

    The Persistence of Memory, or How the X-Ray Spectrum of SNR 0509-67.5 Reveals the Brightness of its Parent Type Ia Supernova

    Full text link
    We examine the dynamics and X-ray spectrum of the young Type Ia supernova remnant 0509-67.5 in the context of the recent results obtained from the optical spectroscopy of its light echo. Our goal is to estimate the kinetic energy of the supernova explosion using Chandra and XMM-Newton observations of the supernova remnant, thus placing the birth event of 0509-67.5 in the sequence of dim to bright Type Ia supernovae. We base our analysis on a standard grid of one-dimensional delayed detonation explosion models, together with hydrodynamic and X-ray spectral calculations of the supernova remnant evolution. From the remnant dynamics and the properties of the O, Si, S, and Fe emission in its X-ray spectrum we conclude that 0509-67.5 was originated ~400 years ago by a bright, highly energetic Type Ia explosion similar to SN 1991T. Our best model has a kinetic energy of 1.4x10E51 erg and synthesizes 0.97 Msun of 56Ni. These results are in excellent agreement with the age estimate and spectroscopy from the light echo. We have thus established the first connection between a Type Ia supernova and its supernova remnant based on a detailed quantitative analysis of both objects.Comment: 10 pages, 9 figures, plus an exclusive astro-ph-only Appendix; ApJ in press, companion paper to Rest et al. 0

    Geometric optics and instability for semi-classical Schrodinger equations

    Full text link
    We prove some instability phenomena for semi-classical (linear or) nonlinear Schrodinger equations. For some perturbations of the data, we show that for very small times, we can neglect the Laplacian, and the mechanism is the same as for the corresponding ordinary differential equation. Our approach allows smaller perturbations of the data, where the instability occurs for times such that the problem cannot be reduced to the study of an o.d.e.Comment: 22 pages. Corollary 1.7 adde

    The Origin of the Iron-Rich Knot in Tycho's Supernova Remnant

    Get PDF
    X-ray observations of supernova remnants (SNRs) allow us to investigate the chemical inhomogeneity of ejecta, offering unique insight into the nucleosynthesis in supernova explosions. Here we present detailed imaging and spectroscopic studies of the "Fe knot" located along the eastern rim of the Type Ia SNR Tycho (SN 1572) using Suzaku and Chandra long-exposure data. Surprisingly, the Suzaku spectrum of this knot shows no emission from Cr, Mn, or Ni, which is unusual for the Fe-rich regions in this SNR. Within the framework of the canonical delayed-detonation models for SN Ia, the observed mass ratios M_Cr/M_Fe < 0.023, M_Mn/M_Fe < 0.012, and M_Ni/M_Fe < 0.029 (at 90% confidence) can only be achieved for a peak temperature of (5.3-5.7) x 10^9 K and a neutron excess of < 2.0 x 10^-3. These constraints rule out the deep, dense core of a Chandrasekhar-mass white dwarf as the origin of the Fe knot, and favors either incomplete Si burning or the alpha-rich freeze-out regime, probably close to their boundary. An explosive He burning regime is a possible alternative, although this hypothesis is in conflict with the main properties of this SNR.Comment: 13 pages, 13 figures, accepted for publication in Ap
    corecore